Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
ACS Nano ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616401

RESUMO

External electric field has the potential to influence metabolic processes such as biological hydrogen production in microorganisms. Based on this concept, we designed and constructed an electroactive hybrid system for microbial biohydrogen production under an electric field comprised of polydopamine (PDA)-modified Escherichia coli (E. coli) and Ni foam (NF). In this system, electrons generated from NF directly migrate into E. coli cells to promote highly efficient biocatalytic hydrogen production. Compared to that generated in the absence of electric field stimulation, biohydrogen production by the PDA-modified E. coli-based system is significantly enhanced. This investigation has demonstrated the mechanism for electron transfer in a biohybrid system and gives insight into precise basis for the enhancement of hydrogen production by using the multifield coupling technology.

2.
Acta Biomater ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641183

RESUMO

Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (TEM) cells and PD-1 inhibitors (aPD-1). The biomimetic lymph nodes facilitate the delivery of TEM cells and aPD-1 to the TdLN and the tumor immune microenvironment, thus realizing effective and sustained anti-tumor immunotherapy. Exploiting their unique gel-forming and degradation properties, the cold tumors were speedily transformed into hot tumors via TEM cell supplementation. Meanwhile, the efficacy of aPD-1 was markedly elevated compared with conventional drug delivery methods. Our finding suggested that the development of F127@TEM@aPD-1 holds promising potential as a future novel clinical drug delivery technique. STATEMENT OF SIGNIFICANCE: Bionic artificial lymph nodes(F127@TEM@aPD-1) show unique advantages in cancer treatment. When injected subcutaneously, the artificial lymph node can continuously supplement TEM cells and aPD-1 to tumor draining lymph nodes (TdLN) and the tumor microenvironment, not only improving the efficacy of ICB therapy through slow release, but also exhibiting dual regulatory effects on the tumor and TdLN.

3.
Sci Adv ; 10(10): eadn2706, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457507

RESUMO

The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.


Assuntos
Evolução Biológica , Proteínas de Choque Térmico HSP90 , Proteínas de Choque Térmico HSP90/metabolismo , Mitose , Dobramento de Proteína , Fenótipo
4.
Adv Mater ; : e2400421, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430204

RESUMO

Thanks to the extensive efforts toward optimizing perovskite crystallization properties, high-quality perovskite films with near-unity photoluminescence quantum yield are successfully achieved. However, the light outcoupling efficiency of perovskite light-emitting diodes (PeLEDs) is impeded by insufficient light extraction, which poses a challenge to the further advancement of PeLEDs. Here, an anisotropic multifunctional electron transporting material, 9,10-bis(4-(2-phenyl-1H-benzo[d]imidazole-1-yl)phenyl) anthracene (BPBiPA), with a low extraordinary refractive index (ne ) and high electron mobility is developed for fabricating high-efficiency PeLEDs. The anisotropic molecular orientations of BPBiPA can result in a low ne of 1.59 along the z-axis direction. Optical simulations show that the low ne of BPBiPA can effectively mitigate the surface plasmon polariton loss and enhance the photon extraction efficiency in waveguide mode, thereby improving the light outcoupling efficiency of PeLEDs. In addition, the high electron mobility of BPBiPA can facilitate balanced carrier injection in PeLEDs. As a result, high-efficiency green PeLEDs with a record external quantum efficiency of 32.1% and a current efficiency of 111.7 cd A-1 are obtained, which provides new inspirations for the design of electron transporting materials for high-performance PeLEDs.

5.
Small Methods ; : e2301555, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185747

RESUMO

Iridium(III) complexes are particularly noted for their excellent potentials in fabrication of blue organic light-emitting diodes (OLEDs), but the severe efficiency roll-off largely hampered their practical applications. To reveal the underlying characteristics, three Ir(III) complexes, namely f-ct5c, f-ct5d, and f-ct11, bearing imidazo[4,5-b]pyrazin-2-ylidene cyclometalates are prepared and characterized in detail. Both f-ct5c and f-ct5d (also their mixture f-ct5mix) gave intensive blue emissions peaking at ≈465 nm with short radiative lifetimes of 1.76 and 2.45 µs respectively, in degassed toluene. Alternatively, f-ct11 with two 4-tert-butylphenyl substituents on each imidazo[4,5-b]pyrazin-2-ylidene entity, possessed a bluish-green emission (508 nm) together with an extended radiative lifetime of 34.3 µs in the dispersed PMMA matrix. Consequently, the resulting solution-processed OLED with f-ct11 delivered a maximum external quantum efficiency (EQEmax ) of 6.5% with serious efficiency roll-offs. In contrast, f-ct5mix based device achieved a high EQEmax of 27.2% and the EQE maintained at 23.0% of 1000 cd m-2 . Furthermore, the hyper-OLEDs with f-ct5mix as the sensitizer and v-DABNA as the terminal emitter afford narrowed emission with a considerably high EQEmax exceeding 32%, affirming the potential of f-ct5mix to serve as both the emitter and sensitizer in OLEDs.

6.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37333256

RESUMO

The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the Multicellularity Long Term Evolution Experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by downregulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.

7.
Small ; : e2311114, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157494

RESUMO

Due to the relatively low photoluminescence quantum yield (PLQY) and horizontal dipole orientation of doped films, anthracene-based fluorescent organic light-emitting diodes (F-OLEDs) have faced a great challenge to achieve high external quantum efficiency (EQE). Herein, a novel approach is introduced by incorporating penta-helicene into anthracene, presented as linear-shaped 3-(4-(10-phenylanthracen-9-yl)phenyl)dibenzo[c,g]phenanthrene (BABH) and 3-(4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)dibenzo[c,g]phenanthrene (NABH). These blue hosts exhibit minimal intermolecular overlap of π-π stacking, effectively suppressing excimer formation, which facilitates the effective transfer of singlet energy to the fluorescent dopant for PLQY as high as 90%. Additionally, the as-obtained two hosts of BABH and NABH have effectively demonstrated major horizontal components transition dipole moments (TDM) and high thermal stability with glass transitional temperature (Tg ) surpassing 188 °C, enhancing the horizontal dipole orientation of their doped films to be 89% and 93%, respectively. The OLEDs based on BABH and NABH exhibit excellent EQE of 10.5% and 12.4% at 462 nm and device lifetime up to 90% of the initial luminance over 4500 h at 100 cd m-2 , which has firmly established them as among the most efficient blue F-OLEDs based on anthracene to date to the best knowledge. This work provides an instructive strategy to design an effective host for highly efficient and stable F-OLEDs.

8.
Small ; : e2307500, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940631

RESUMO

The promising cyclometalated iridium (III) complexes have been proved to possess great potential in vacuum-deposited organic light-emitting diodes (OLEDs) applications for full-color displays and white solid-state lighting sources. Herein, based on the unique bidentate ligand of dibenzo[a,c]phenazine (dbpz) group with strong conjugated effect of aromatic rings for red emission, four novel [3+2+1] coordinated iridium (III) emissive materials have been rationally designed and synthesized. The monodentate ligands of -CN and -OCN have been effectively employed to tune the deep-red emission of 628-675 nm with high photoluminescence quantum yields up to 98%. Moreover, all devices displayed deep-red color coordinates ranging from (0.675, 0.325) to (0.716, 0.284), which is close to the standard-red color coordinates of (0.708, 0.292), as recommended by International Telecommunication Union Radiocommunication (ITU-R) BT.2020. The device based on n BuIr(dbpz)CN with an exciplex cohost has exhibited maximum external quantum efficiencies of 20.7% and good stability. With n BuIr(dbpz)CN as an effective sensitizer, the n BuIr(dbpz)OCN based phosphorescent OLED devices have successfully demonstrated cascading energy transfer processes, contributing to pure red emission with maximum luminance as high as 6471 cd m-2 . Therefore, this work has been successfully demonstrated rational molecular design strategy of [3+2+1] iridium complexes to obtain highly efficient deep-red electrophosphorescent emission.

9.
Adv Sci (Weinh) ; 10(29): e2301112, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37653609

RESUMO

Two newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v-DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v-DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper-OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated-blue hyper-OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper-OLEDs have obtained the converted lifetime (LT50 ) up to 4552 h at the brightness of 100 cd m-2 , demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.

10.
J Exp Clin Cancer Res ; 42(1): 228, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667382

RESUMO

BACKGROUND: Accumulating evidence has demonstrated that aberrant expression of deubiquitinating enzymes is associated with the initiation and progression of Triple-negative breast cancer (TNBC). The publicly available TCGA database of breast cancer data was used to analyze the OTUD deubiquitinating family members that were correlated with survival of breast cancer and ovarian tumor domain-containing 2 (OTUD-2), or YOD1 was identified. The aim of present study was to assess YOD1 expression and function in human TNBC and then explored the underlying molecular events. METHODS: We detected the expression of YOD1 in 32 TNBC and 44 NTNBC samples by qRT-PCR, Western blot and immunohistochemistry. Manipulation of YOD1 expression was assessed in vitro and in vivo for TNBC cell proliferation, migration, invasion, cell-cycle and drug resistance, using colony formation assay, transwell assay, CCK8 assay, TUNEL assay, flow cytometric analysis and xenograft tumor assay. Next, proteomic analysis, Western blot, proximity ligation assay, Immunoprecipitation, and Immunofluorescence were conducted to assess downstream targets. RESULTS: It was found that YOD1 was significantly upregulated in TNBC tissues compared with non-triple-negative breast cancer (NTNBC), which was positively correlated with poor survival in TNBC patients. Knockdown of YOD1 effectively inhibited TNBC cell migration, proliferation, cell cycle and resistance to cisplatin and paclitaxel. Mechanistically, YOD1 promoted TNBC progression in a manner dependent on its catalytic activity through binding with CDK1, leading to de-polyubiquitylation of CDK1 and upregulation of CDK1 expression. In addition, YOD1 overexpression was found to be correlated with CDK1 overexpression in human TNBC specimens. Finally, in vivo study demonstrated that YOD1 knockdown or YOD1 inhibitor could inhibit CDK1 expression and suppress the growth and metastasis of TNBC tumors. CONCLUSION: Our study highlights that YOD1 functions as an oncogene in TNBC via binding to CDK1 and mediated its stability and oncogenic activity. Interfering with YOD1 expression or YOD1 inhibitor could suppress TNBC cells in vitro and in vivo, suggesting that YOD1 may prove to be a promising therapeutic target for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Proteômica , Carcinogênese/genética , Transformação Celular Neoplásica , Oncogenes , Proteína Quinase CDC2/genética , Endopeptidases , Tioléster Hidrolases
11.
Mol Cell ; 83(18): 3360-3376.e11, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37699397

RESUMO

Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry (LiP-MS). The results, compiled in online ProtAge catalog, unraveled age-related functional changes in regulators of translation, protein folding, and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging, causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction, and led to lifespan extension. Altogether, this comprehensive map of protein structural changes enables identifying mechanisms of age-related phenotypes and offers opportunities for their reversal.


Assuntos
Senescência Celular , Longevidade , Longevidade/genética , Polimerização , Aminoácidos
12.
Mol Biotechnol ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37608076

RESUMO

Osteogenic sarcoma (OS), one of the mesenchymal tumors with a high degree of malignancy, mainly occurs in the metaphysis of the long bones and around the knee joints in children and adolescents. The poor diagnosis in patients with OS can be attributed to the lack of early clinical symptoms, although the growth of tumor mass gradually results in severe pain and systemic symptoms. The mechanisms underlying the pathogenesis of OS are not fully understood. Thus, identifying early diagnostic biomarkers and novel targets involved in the progression of OS is of critical significance in the management of OS. CircRNA is a class of non-coding RNAs characterized by the close-loop structure and increased stability, which are implicated in the regulation of cell proliferation, differentiation, migration, and apoptosis. Moreover, circRNAs also play significant roles in aging and chronic disorders, such as cancer and cardiovascular diseases. Accordingly, we reported the upregulation of circRNA-CIRH1A in OS tissues and cell lines. Silencing circRNA-CIRH1A in OS cell lines (U2OS, HOS, Saos-2, and MG-63) could inhibit the cell proliferation, invasion, migration, and apoptosis, which was also validated in xenograft tumorigenesis mouse model. We further demonstrated that circRNA-CIRH1A sponged miR-1276, which subsequently disrupted the effect of miR-1276 on PI3K/AKT and JAK2/STAT3 signaling pathways. Together, our study revealed the oncogenic role of circRNA-CIRH1A in OS, and identified miR-1276/ PI3K-AKT and JAK2-STAT3 signaling axis as the key downstream mediators of circRNA-CIRH1A.

13.
Polymers (Basel) ; 15(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514471

RESUMO

Kirigami structures, a Japanese paper-cutting art form, has been widely adopted in engineering design, including robotics, biomedicine, energy harvesting, and sensing. This study investigated the effects of slit edge notches on the mechanical properties, particularly the tensile stiffness, of 3D-printed PA12 nylon kirigami specimens. Thirty-five samples were designed with various notch sizes and shapes and printed using a commercial 3D printer with multi-jet fusion (MJF) technique. Finite element analysis (FEA) was employed to determine the mechanical properties of the samples computationally. The results showed that the stiffness of the kirigami samples is positively correlated with the number of edges in the notch shape and quadratically negatively correlated with the notch area of the samples. The mathematical relationship between the stretching tensile stiffness of the samples and their notch area was established and explained from an energy perspective. The relationship established in this study can help fine-tune the stiffness of kirigami-inspired structures without altering the primary parameters of kirigami samples. With the rapid fabrication method (e.g., 3D printing technique), the kirigami samples with suitable mechanical properties can be potentially applied to planar springs for hinge structures or energy-absorbing/harvesting structures. These findings will provide valuable insights into the development and optimization of kirigami-inspired structures for various applications in the future.

14.
J Orthop Surg Res ; 18(1): 522, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481547

RESUMO

BACKGROUND: The present study aimed to explore the time of maximum bacterial load and main colonization knee site in bacterial infection process based on a novel rat model of septic arthritis (SA) after anterior cruciate ligament reconstruction (ACLR). METHODS: Ninety-five Wistar rats with unilateral ACLR, random enrolled into control surgery (CS) group; joint inject (JI) group; presoaking (PS) group, were injected with 30 µl sterile saline or 30 µl × 107 colony forming units/ml Staphylococcus aureus via the knee joint or graft with presoaked Staphylococcus aureus during ACLR, respectively. At 1, 4, 7, 11, and 14 days postoperatively, samples were harvested to evaluate progress of knee joint infection by postoperative body weight, body temperature, knee temperature, knee width, scales of tissue damage, serum inflammatory markers, microbiological counting, microcomputed tomography (Micro-CT), digital radiography, magnetic resonance imaging (MRI) examination, and scanning electron microscopy (SEM). RESULTS: No systemic infection was observed in all rats. Comparing with serum inflammatory markers, tissue scores of inflammatory reactions, bacterial counts in the CS group, these data were significantly elevated in the JI group and PS group. The bone mass around the bone tunnel was lower and the soft tissue of knee showed more obvious swelling on MRI in the infection groups than that in the CS group at 7 and 14 days postoperatively. Staphylococcus aureus clusters on the surface of screw and graft were observed in the infection group. The whole colony forming units of Staphylococcus aureus maintained a continuous upward trend peaking 7 and 11 days followed by a balanced curve in the infection groups. Bone and soft tissue were found to have more bacterial counts than graft and screws. CONCLUSION: This animal model effectively mimics the acute knee infection after ACLR. We found that the bacterial colonization exhibited the peak of acute infection between 7 and 11 days postoperatively, with the major bacteria loads found in the bone, soft tissue.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Artrite Infecciosa , Infecções Estafilocócicas , Ratos , Animais , Staphylococcus aureus , Microtomografia por Raio-X , Ratos Wistar
15.
Nature ; 617(7962): 747-754, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165189

RESUMO

While early multicellular lineages necessarily started out as relatively simple groups of cells, little is known about how they became Darwinian entities capable of sustained multicellular evolution1-3. Here we investigate this with a multicellularity long-term evolution experiment, selecting for larger group size in the snowflake yeast (Saccharomyces cerevisiae) model system. Given the historical importance of oxygen limitation4, our ongoing experiment consists of three metabolic treatments5-anaerobic, obligately aerobic and mixotrophic yeast. After 600 rounds of selection, snowflake yeast in the anaerobic treatment group evolved to be macroscopic, becoming around 2 × 104 times larger (approximately mm scale) and about 104-fold more biophysically tough, while retaining a clonal multicellular life cycle. This occurred through biophysical adaptation-evolution of increasingly elongate cells that initially reduced the strain of cellular packing and then facilitated branch entanglements that enabled groups of cells to stay together even after many cellular bonds fracture. By contrast, snowflake yeast competing for low oxygen5 remained microscopic, evolving to be only around sixfold larger, underscoring the critical role of oxygen levels in the evolution of multicellular size. Together, this research provides unique insights into an ongoing evolutionary transition in individuality, showing how simple groups of cells overcome fundamental biophysical limitations through gradual, yet sustained, multicellular evolution.


Assuntos
Aclimatação , Evolução Biológica , Agregação Celular , Saccharomyces cerevisiae , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Anaerobiose , Aerobiose , Oxigênio/análise , Oxigênio/metabolismo , Forma Celular , Agregação Celular/fisiologia
16.
Research (Wash D C) ; 6: 0134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223480

RESUMO

Neural networks have achieved impressive breakthroughs in both industry and academia. How to effectively develop neural networks on quantum computing devices is a challenging open problem. Here, we propose a new quantum neural network model for quantum neural computing using (classically controlled) single-qubit operations and measurements on real-world quantum systems with naturally occurring environment-induced decoherence, which greatly reduces the difficulties of physical implementations. Our model circumvents the problem that the state-space size grows exponentially with the number of neurons, thereby greatly reducing memory requirements and allowing for fast optimization with traditional optimization algorithms. We benchmark our model for handwritten digit recognition and other nonlinear classification tasks. The results show that our model has an amazing nonlinear classification ability and robustness to noise. Furthermore, our model allows quantum computing to be applied in a wider context and inspires the earlier development of a quantum neural computer than standard quantum computers.

17.
J Orthop Surg Res ; 18(1): 299, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055765

RESUMO

BACKGROUND: Systemic vancomycin administration pre-operatively for the infection prophylaxis of spinal implant surgery remains unsatisfactory. This study aimed to explore the efficacy and dosage of local use of vancomycin powder (VP) in preventing surgical site infections after spinal implant surgery in a rat model. METHODS: Systemic vancomycin (SV; intraperitoneal injection, 88 mg/kg) or intraoperative intra-wound VP (VP0.5: 44 mg/kg, VP1.0: 88 mg/kg, VP2.0: 176 mg/kg) was applied after spinal implant surgery and methicillin-resistant S. aureus (MRSA; ATCC BAA-1026) inoculation in rats. General status, blood inflammatory biomarkers, microbiological and histopathological evaluation were performed during 2 weeks post-surgery. RESULTS: No post-surgical deaths, wound complications and obvious signs of vancomycin adverse effects were observed. Bacterial counts, blood and tissue inflammation were reduced in the VP groups compared with the SV group. VP2.0 group showed better outcomes in weight gain and tissue inflammation than the VP0.5 and VP1.0 group. Microbial counts indicated that no bacteria survived in the VP2.0 group, whereas MRSA was detected in VP0.5 and VP1.0 groups. CONCLUSIONS: Intra-wound VP may be more effective than systemic administration in preventing infection caused by MRSA (ATCC BAA-1026) after spinal implant surgery in a rat model.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Ratos , Animais , Vancomicina , Antibacterianos , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/microbiologia , Resistência a Meticilina , Inflamação/etiologia , Inflamação/prevenção & controle , Inflamação/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico
18.
Environ Technol ; 44(8): 1061-1070, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34651547

RESUMO

This paper designs and builds a small constructed wetland test site to study the internal hydraulic characteristics of different types of constructed wetlands, conducts NaCl pulse tracing experiments, and fits the residence time distribution (RTD) with the CSTRs+PFD model (Continuous Stirred-Tank Reactor model in parallel with Plug Flow with Dispersion model). The results showed that, among the six types of constructed wetlands, hydraulic parameters of horizontal subsurface flow constructed wetlands with baffles had the best performance, with a tracer recovery rate (F(t)) reaching 43.67% and hydraulic efficiency (λ) reaching 0.81. The addition of baffles slowed flow velocity, increased mean hydraulic retention time (Tm) and peak residence time (Tp), and reduced the short circuits phenomenon. The velocity of internal water flow increased during the horizontal and vertical deflections, which could well avoid the stagnation phenomenon caused by complicated flow state, thereby improving the hydraulic efficiency (λ). The CSTRs+PFD model can better fit the RTD of 6 different types of constructed wetlands. The peak value of the fitted curve, the time to reach the peak and the slope of the curve are all very similar to the measured RTD.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos
19.
Clin Orthop Relat Res ; 481(1): 177-189, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36135966

RESUMO

BACKGROUND: Low-dose antibiotic-loaded acrylic cement is routinely used for preventing skeletal infection or reimplantation in patients with periprosthetic joint infections. However, few reports about the selection of antibiotics in acrylic cement for antigram-negative bacteria have been proposed. QUESTIONS/PURPOSES: (1) Does the addition of antibiotics (tobramycin, meropenem, piperacillin, ceftazidime, ciprofloxacin, and aztreonam) to acrylic cement adversely affect compressive strength before and after elution? (2) Which antibiotics have the highest cumulative release within 28 days? (3) Which antibiotics showed antimicrobial activity within 28 days? (4) Does meropenem-loaded cement improve body weight, temperature, and other inflammatory markers compared with control unloaded cement? METHODS: This is an in vitro study that assessed the mechanical strength, antibiotic elution, and antibacterial properties of antibiotic-loaded cement, combined with an animal study in a rat model that evaluated key endpoints from the animal study. In the in vitro study, we added 2 g of tobramycin (TOB), meropenem (MEM), piperacillin (PIP), ceftazidime (CAZ), ciprofloxacin (CIP), and aztreonam (ATM) to 40 g of acrylic cement. The compressive strength, elution, and in vitro antibacterial properties of the antibiotic-loaded cement were detected. Thirty male rats were randomly divided into two groups: CON (antibiotic-unloaded cement) and MEM (meropenem-loaded cement, which had the most stable antibacterial properties of the six tested antibiotic-loaded cements in vitro within 28 days). The right tibia of all rats underwent arthroplasty and was implanted with the cement, followed by inoculation with Pseudomonas aeruginosa in the knee. General status, serum biomarkers, radiology, microbiological assay, and histopathological tests were assessed over 14 days postoperatively. RESULTS: The compressive strength of all tested antibiotic cement combinations exceeded the 70 MPa threshold (the requirement established in ISO 5833). The cumulative release proportions of the raw antibiotic in cement were 1182.8 ± 37.9 µg (TOB), 355.6 ± 16.2 µg (MEM), 721.2 ± 40.3 µg (PIP), 477.4 ± 37.1 µg (CAZ), 146.5 ± 11.3 µg (CIP), and 372.1 ± 14.5 µg (ATM) within 28 days. Over a 28-day period, meropenem cement demonstrated antimicrobial activities against the four tested gram-negative bacteria ( Escherichia coli , P. aeruginosa , Klebsiella pneumoniae , and Proteus vulgaris ). Ciprofloxacin cement inhibited E. coli growth, ceftazidime and aztreonam cement inhibited K. pneumonia growth, and tobramycin cement inhibited P. aeruginosa . Only meropenem demonstrated antimicrobial activity against all gram-negative bacteria on agar diffusion bioassay. Rats treated with meropenem cement showed improved body weight (control: 280.1 ± 4.2 g, MEM: 288.5 ± 6.6 g, mean difference 8.4 [95% CI 4.3 to 12.6]; p < 0.001), improved knee width (control: 13.5 ± 0.3 mm, MEM: 11.8± 0.4 mm, mean difference 1.7 [95% CI 1.4 to 2.0]; p < 0.001), decreased inflammatory marker (control: 316.7 ± 45.0 mm, MEM: 116.5 ± 21.8 mm, mean difference 200.2 [95% CI 162.3 to 238.2]; p < 0.001), decreased radiographic scores (control: 17.7 ± 2.0 mm, MEM: 10.7± 1.3 mm, mean difference 7.0 [95% CI 5.4 to 8.6]; p < 0.001), improved bone volume/total volume (control: 8.7 ± 3.0 mm, MEM: 28.5 ± 5 .5 mm, mean difference 19.8 [95% CI 13.3 to 26.2]; p < 0.001), decreased Rissing scale scores of the knee gross pathology (control: 3.3 ± 0.5, MEM: 1.1 ± 0.7, mean difference 2.2 [95% CI 1.7 to 2.7]; p < 0.001), decreased Petty scale scores of knee synovium (control: 2.9 ± 0.4 mm, MEM: 0.7 ± 0.7 mm, mean difference 2.1 [95% CI 1.7 to 2.5]; p < 0.001), and decreased bacterial counts of the bone and soft tissues and negative bacterial cultures of cement (p < 0.001, p < 0.001, p < 0.001, p < 0.001, respectively). CONCLUSION: In this current study, MEM cement had the most stable in vitro antimicrobial activities, effective in vivo activity while having acceptable mechanical and elution characteristics, and it may be an effective prophylaxis against skeletal infection caused by gram-negative bacteria. CLINICAL RELEVANCE: Meropenem-loaded acrylic cement is a potentially effective prevention measure for skeletal infection caused by gram-negative bacteria; however, more related clinical research is needed to further evaluate the safety and efficacy.


Assuntos
Ceftazidima , Osteomielite , Masculino , Animais , Ratos , Meropeném/farmacologia , Ceftazidima/farmacologia , Aztreonam/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Cimentos Ósseos , Tobramicina , Piperacilina , Ciprofloxacina , Modelos Animais , Testes de Sensibilidade Microbiana
20.
Stem Cell Res Ther ; 13(1): 295, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841008

RESUMO

BACKGROUND: Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. METHODS: Highly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro. The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. RESULTS: Bioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. CONCLUSIONS: BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Exossomos , Macrófagos , Células-Tronco Mesenquimais , MicroRNAs , Animais , Exossomos/transplante , Macrófagos/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Ratos , Tendões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...